

A NOTE ON THE CLASS OF N-POWER QUASI-ISOMETRY

J. STELLA IRENE MARY & P. VIJAYALAKSHMI

Department of Mathematics, P.S.G College of Arts and Science, Coimbatore, Tamil Nadu, India

ABSTRACT

In this paper we introduce a new class of operators called the n - power quasi - isometry and study their properties related to quasinormality and partial isometry. We also introduce another related new class of operators and investigate their spectral properties.

KEYWORDS: Hilbert Space, Isometry, Operator, Quasinormal, Quasi-Isometry

AMS 2010 Mathematics Subject Classification: 47B20, 47A62, 47A63.

1. INTRODUCTION

Let T be a bounded linear operator on a complex Hilbert space H. T is said to be

- (i) Normal if $T^*T = TT^*$
- (ii) N-Normal if $T^{*}T^{n} = T^{n}T^{*}$ [2]
- (iii) Quasinormal if $T(T^*T) = (T^*T)T$
- (iv) Quasi Isometry if $T^{*2}T^2 = T^*T$
- (v) N-Power Quasinormal if $T^*TT^n = T^nT^*T$ [6].

The class of normal, n-normal, quasinormal and n-power quasinormal operators are denoted by [N], [nN], [QN] and [nQN] respectively. The class of quasi-isometries which is a simple extension of isometries was introduced by[4]. The quasi-isometry operators retain some properties of isometries[5]. We introduce a new class of operators T namely n-power quasi-isometry denoted by [nQI] satisfying $T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$, $n \in N$. Obviously this is based on the class of quasi-isometries denoted by [QI][4]. It is evident that when n = 1, [1QI] = [QI]. Interestingly we observe that, for n = 1, 2, 3,... the corresponding classes [nQI] are independent which is evident from the following examples.

Example 1.1: For the operator $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, a simple calculation shows that $T \notin [QI]$ but $T \in [2QI]$.

Example 1.2: The operator $T = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, is [QI] but not [2QI].

Example 1.3: When $H = \ell^2$, the unilateral shift given by the matrix operator T =

$$T = \begin{pmatrix} 0 & 0 & 0 & . & . \\ 1 & 0 & 0 & . & . \\ 0 & 1 & 0 & . & . \\ ... & ... & ... & . & . \end{pmatrix}, \text{ satisfies}$$

 $T(T^{*2}T^2) = (T^*T)T$ but not $T^2(T^{*2}T^2) = (T^*T)T^2$. That is, $T \in [2QI]$ and $T \notin [3QI]$.

Let B(H) denote the Banach algebra of all bounded linear operators on a complex Hilbert space H and let $\sigma(T)$, $\sigma_a(T)$ and $\sigma_p(T)$ denote the spectrum, the approximate point spectrum and the point spectrum of T respectively.

2. PROPERTIES OF CLASS [nQI]

Definition 2.1: An operator T is said to be unitarily equivalent to an operator S if $S = UTU^*$ for an unitary operator U. **Theorem 2.2:** The following assertions hold:

(1) If $T \in [QI] \cap [2QI]$ then $T \in [nQI], n > 2$.

(2) If $T \in [2QI] \cap [3QI]$ then $T \in [nQI], n \ge 4$.

(3) If $T \in [nQI]$ then every operator unitarily equivalent to T is also [nQI].

(4) $T \in [QI] \cap [nQI]$ then $T \in [(n-1)QN], n \ge 2$.

Proof: (1) Since $T \in [QI] \cap [2QI]$, we have,

$$T^{*2}T^2 = T^*T$$
 (2.1)

$$TT^{*2}T^2 = T^*TT.$$
 (2.2)

Combining (2.1) and (2.2), we obtain,

$$TT^{*2}T^2 = T^{*2}T^2T$$
(2.3)

By (2.1) and (2.3), $(T^*T)T^{n-1} = (T^{*2}T^2)T^{n-1} = (T^{*2}T^2T)T^{n-2} = (TT^{*2}T^2)T^{n-2}$.

Again applying (2.3) in $(T^*T)T^{n-1} = T(T^{*2}T^2T)T^{n-3}$, we obtain $(T^*T)T^{n-1} = T(TT^{*2}T^2)T^{n-3}$.

Repeating the procedure we arrive at $T^*TT^{n-1} = T^{n-1}T^{*2}T^2$.

(2) Since
$$T \in [2QI] \cap [3QI], T^2T^{*2}T^2 = T^*TT^2$$
 and $TT^{*2}T^2 = T^*TT$. (2.4)

Combining these two equations we obtain, $T(TT^{*2}T^2) = (TT^{*2}T^2)T$ (2.5)

Using (2.4) and (2.5) we have

$$T^{*}TT^{n-1} = (T^{*}TT)T^{n-2} = (TT^{*2}T^{2})T^{n-2} = (TT^{*2}T^{2})TT^{n-3} = T(TT^{*2}T^{2})T^{n-3} = T^{2}T^{*2}T^{2}T^{n-3}$$

Using (2.5) repeatedly for a finite number of times we obtain $T^*TT^{n-1} = T^{n-1}T^{*2}T^2$.

(3) Let *S* be unitarily equivalent to $T \in [nQI]$. Then $S = UTU^*$, where *U* is unitary. Since $T \in [nQI]$, $T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$ and $S^{n-1}S^{*2}S^2 = (U T^{n-1}U^*)(UT^{*2}U^*)(UT^2U^*) = U(T^{n-1}T^{*2}T^2)U^* = U(T^*T^n)U^* = S^*S^n$.

(4) Since $T \in [QI] \cap [nQI]$, we have,

$$T^{*2}T^2 = T^*T$$
 (2.6)

$$T^{n-1}T^{*2}T^2 = T^*TT^{n-1}.$$
(2.7)

$$T^{*}TT^{n-1} = T^{n-1}T^{*2}T^{2}$$
 by(2.7)

$$T^{*}TT^{n-1} = T^{n-1}T^{*}T$$
 by(2.6)

Hence $T \in [(n-1)QN]$.

It is natural to ask whether the product and sum of two [nQI] operators are [nQI]. In general they need not be. The following Theorem gives an affirmative answer under some conditions.

Theorem 2.4

- (1) If T and S are of class [nQI], such that T doubly commutes with S then $TS \in [nQI]$.
- (2) If T and S are of class [nQI], such that $ST = TS = T^*S = ST^* = 0$ then $T + S \in [nQI]$.

Proof: (1) Since T doubly commutes with S, TS = ST and $TS^* = S^*T$.

 $(TS)^{n-1}(TS)^{*2}(TS)^{2} = T^{n-1}S^{n-1}S^{*2}T^{*2}T^{2}S^{2} = S^{n-1}S^{*2}S^{2}T^{n-1}T^{*2}T^{2} = S^{*}SS^{n-1}T^{*}TT^{n-1} = (TS)^{*}(TS)(TS)^{n-1}S^$

(2) Since
$$TS = ST = T^*S = ST^* = 0$$
, we have,
 $(T + S)^{n-1}(T + S)^{*2}(T + S)^2 = (T^{n-1} + S^{n-1})(T^{*2} + S^{*2})(T^2 + S^2) = T^{n-1}T^{*2}T^2 + S^{n-1}S^{*2}S^2$
 $= T^*TT^{n-1} + S^*SS^{n-1}$ since $T, S \in [nQI]$. $(T + S)^{n-1}(T + S)^{*2}(T + S)^2 = (T + S)^*(T + S)(T + S)^{n-1}T + S \in [nQI]$.

3. CONDITIONS IMPLYING QUASINORMALITY

The class of normal operators and quasinormal operators are independent of class [nQI]. In this section we prove that under some algebraic conditions T, T² or Tⁿ⁻¹ are quasinormal.

Theorem 3.1

Thus '

(1) Let $T \in [QI] \cap [3QI]$ then T^2 is quasinormal.

(2) If $T \in [2QI] \cap [3QI]$ and ker(T^*) \subset ker(T) then is T quasinormal and in particular if ker(T^*) = 0 then T is normal where kerT is the nullspace of T.

Proof: (1) Since $T \in [QI] \cap [3QI]$, $T^{*2}T^2 = T^*T$ and $T^2T^{*2}T^2 = T^*TT^2$ Hence $T^2T^{*2}T^2 = T^*TT^2 = T^{*2}T^2T^2$ Hence T^2 is quasinormal.

(2) By hypothesis,
$$TT^{*2}T^2 = T^*TT$$
 (3.1)

and
$$T^{2}T^{*2}T^{2} = T^{*}TT^{2}$$
 (3.2)
 $T(TT^{*2}T^{2}) = (T^{*}T)T^{2} \Rightarrow T(T^{*}TT) = (T^{*}T)T^{2} \text{ by (3.1). } (TT^{*} - T^{*}T) T^{2} = 0 \text{ or}$
 $T^{*2}(TT^{*} - T^{*}T) = 0$. Since ker(T^{*}) \subset ker(T), $TT^{*}(TT^{*} - T^{*}T) = 0$ and ker $|T^{*}|^{2} = \text{ker}T^{*}$ implies
 $T^{*}(TT^{*} - T^{*}T) = 0$ (3.3)

 $(TT^* - T^*T)T = 0$. Hence T is quasinormal. If $ker(T^*) = 0$ then from (3.3) we obtain T is normal.

Theorem 3.2: If T and T - I are in $[2QI] \cap [3QI]$, then T is quasinormal.

Proof: Since $T \in \! [2QI]$ and T - $I \in \! [2QI]$,

$$TT^{*2}T^2 = T^*TT$$
(3.4)

$$(T - I)(T - I)^{*2}(T - I)^{2} = (T - I)^{*}(T - I)(T - I)$$
(3.5)

To prove that T is quasinormal, by part 2 of Theorem 3.1, it is enough to prove the kernel condition $\ker(T^*) \subset \ker(T)$ Since $(T-I) \in [3QI], (T-I)^2(T-I)^{*2}(T-I)^2 = (T-I)^*(T-I)(T-I)^2$

$$(T - I)(T - I)^{*}(T - I)^{2} = (T - I)^{*}(T - I)(T - I)^{2}$$
 by (3.5).
On simplifying we obtain, $TT^{*}T^{2} + TT^{*} - 2TT^{*}T + 2T^{*}T^{2} - T^{*}T^{3} - T^{*}T = 0$.
 $TT^{*}T^{2} + TT^{*} - 2TT^{*}T + 2(TT^{*2}T^{2}) - (TT^{*2}T^{2})T - T^{*}T = 0$ by (3.4)
or $T^{*2}TT^{*} + TT^{*} - 2T^{*}TT^{*} + 2T^{*2}T^{2}T^{*} - T^{*}T^{*2}T^{2}T^{*} - T^{*}T = 0$.
Let $x \in \text{ker}(T^{*})$, then $T^{*}x = 0$. From the above equation, $-T^{*}Tx = 0 \Rightarrow Tx = 0$. Therefore
 $\text{ker}(T^{*}) \subset \text{ker}(T)$ and hence T is quasinormal.

Theorem 3.3: If $T \in [QI] \cap [nQI]$ then T^{n-1} is quasinormal.

Proof: By hypotheses given in the theorem, we have

$$T^{*2}T^{2} = T^{*}T$$
(3.6)

$$T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$$
(3.7)

We need to prove $T^{n-1}(T^{*n-1}T^{n-1}) = (T^{*n-1}T^{n-1})T^{n-1}$

$$T^{n-1}(T^{*n-1}T^{n-1}) = T^{n-1}T^{*n-3}(T^{*2}T^{2})T^{n-3} = T^{n-1}T^{*n-2}T^{n-2}$$
 by (3.6).

Repeated application of (3.6) gives, $T^{n-1}(T^{*n-1}T^{n-1}) = T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$ by (3.7)

$$=T^{*2}T^{2}T^{n-1}$$
 by (3.6)

$$= T^{*3}T^{3}T^{n-1} \text{ by } (3.6)$$
$$= T^{*4}T^{4}T^{n-1} \text{ by } (3.6)$$

Repeating the process and using (3.6) we obtain the desired result.

4. CONDITIONS IMPLYING PARTIAL ISOMETRY

In this section we show that by imposing certain conditions on [nQI]operator it becomes partial isometry.

Lemma 4.1: Let $T \in [nQI]$ then $T \in [(n+1)QI]$ if and only if $[T^*T^n, T] = 0$ where [A,B] = AB - BA.

Proof:
$$T \in [(n+1)QI] \Leftrightarrow T^n T^{*2}T^2 = T^*TT^n \Leftrightarrow T(T^{n-1}T^{*2}T^2) = (T^*T^n) T \Leftrightarrow T(T^*TT^{n-1}) = (T^*T^n) T$$

 $\Leftrightarrow T(T^*T^n) = (T^*T^n) T \Leftrightarrow [T^*T^n, T] = 0.$

Theorem 4.2: Let $T \in [(n+1)QI] \cap [nQI]$ such that T^n has dense range in H, then T is normal partial isometry.

Proof: By Lemma 4.1, $TT^*T^n = T^*T^n T$ or $(TT^* - T^*T)T^n = 0$. Since T^n has dense range in H, T is normal. Hence $(T^*T)^2T^n = T^{*2}T^2T^n = T^nT^{*2}T^2 = T^*TT^n$. Thus $[(T^*T)^2 - T^*T]T^n = 0$ on range of T^n and we have T^*T is a projection and hence T is a partial isometry by [2.2.1 Theorem 3[2]].

Corollary 4.3: If $T \in [(n+1)QI] \cap [nQI]$ such that T^n has dense range in H, then T is unitary.

Proof: By Theorem 4.2, T is normal and partial isometry and hence $TT^*T = T$. By the definition of [nQI] $T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$ or $T(T^{n-1}T^{*2}T^2) = T(T^*T^n)$ or $T^nT^{*2}T^2 = TT^*T^n$. (4.1)

Since $T \in [(n+1)QI]$, $T^*T T^n = T^nT^{*2}T^2 = TT^*T^n$ by (4.1). That is $T^*T T^n = TT^*T^n$. Using $TT^*T = T$,

we obtain, $T^{*}T T^{n} = TT^{n-1}$ or $(T^{*}T - I)T^{n} = 0$. Since range of T^{n} is dense in H, $T^{*}T = I$ and hence T is

unitary.

Theorem 4.4: Let T = UP be the polar decomposition of T and $T \in [2QI]$ such that $ker(U) \subset ker(U^*)$ then T is partial isometry.

Proof: $T \in [2QI]$ implies $TT^{*2}T^2 = T^*TT$ or $UP^2U^*P^2UP = P^2UP$. Taking adjoint

$$PU^*P^2UP^2U^* = PU^*P^2$$
. The kernel condition $ker(U) = ker(P)$ yields, $UU^*P^2UP^2U^* = UU^*P^2$ or
 $U^*UU^*P^2UP^2U^* = U^*UU^*P^2$ or $U^*P^2UP^2U^* = U^*P^2$. Since $U^*UP^2 = P^2$ we have,
 $U^*P^2UP^2 = U^*P^2U$, or $U^*P^2U(P^2 - I) = 0$ or $[PU(P^2 - I)]^*[PU(P^2 - I)] = 0$.

Using the fact that, $S^*S = 0 \Longrightarrow S = 0$ for any operator S on H, we obtain $PU(P^2 - I) = 0$. Again

ker(U) = ker(P) yields $U^2(P^2 - I) = 0$. By hypothesis, $ker(U) \subset ker(U^*)$ and hence,

 $U^*U(P^2 - I) = 0$ or $P^2 = U^*U$. That is P^2 is a projection and P is a partial isometry by [2.2.1 Theorem

3[2]]. Hence T = UP is a partial isometry.

Remark 4.5: The above Theorem raises the following question: Is a 2 - power quasi - isometry T a partial isometry if $ker(U^*) \subset ker(U)$.

Theorem 4.6: Let T be of class [nQI] such that T is a partial isometry then T^2 is an isometry.

Proof: T is a partial isometry implies $TT^*T = T$ (4.2) Since $T \in [nQI]$ $T^{n-1}T^{*2}T^2 = T^*TT^{n-1}$. $T(T^{n-1}T^{*2}T^2) = T(T^*TT^{n-1}) \Longrightarrow T^nT^{*2}T^2 = TT^{n-1}$ by (4.2). $T^n(T^{*2}T^2 - I) = 0$ (4.3)

That is, $T^{*2}T^2 = I$ on $\ker(T^n)$. By (4.3) $(T^{*2}T^2 - I)T^{*n} = 0$ or $T^{*2}T^2 = I$ on $\ker(T^n)^{\perp}$. Thus $T^{*2}T^2 = I$ on $H = \ker(T^n) \oplus \ker(T^n)^{\perp}$ implies T^2 is isometry.

Definition 4.7: The spectral radius of $T \in B(H)$ is defined as $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$.

It is well known that for a quasinormal operator, r(T) = ||T|| [2].

Theorem 4.8: If $T \in [QI] \cap [2QI]$, then r(T) = 1 where r(T) is the spectral radius of T.

Proof: Since $T \in [QI] \cap [2QI]$, by 4 of Theorem 2.1, T is quasinormal and hence r(T) = ||T|| = 1.

5. CLASS $[QZ_{\alpha}^{n}]$ **OPERATORS**

A.Uchiyama and T.Yoshino [7] studied a class of opeators T satisfying

$$\left| \mathrm{TT}^* - \mathrm{T}^* \mathrm{T} \right|^{\alpha} \le c_{\alpha}^2 (\mathrm{T} - \lambda \mathrm{I}) (\mathrm{T} - \lambda \mathrm{I})^* \text{ where } \alpha > 0 \text{ and } \lambda \in C$$

Analogously, we define a new class $[QZ_{\alpha}^{n}]$ based on the n- power quasi isometry class [nQI]. We define a class $[QZ_{\alpha}^{n}]$ of operators T satisfying the following hypothesis. $T \in [QZ_{\alpha}^{n}]$ if for some $\alpha \ge 1$ and $c_{\alpha} > 0$, $|T^{n-1}T^{*2}T^{2} - T^{*}TT^{n-1}|^{\alpha} \le c_{\alpha}^{2}(T - \lambda I)^{*n}(T - \lambda I)^{n}$ for all $\lambda \in C$. Equivalently, for some $\alpha \ge 1$ and $c_{\alpha} > 0$ $\left\|T^{n-1}T^{*2}T^{2} - T^{*}TT^{n-1}\right\|^{\alpha} \le c_{\alpha}^{2}(T - \lambda I)^{*n}(T - \lambda I)^{n}$ for all $\lambda \in C$. Also let $[QZ^{n}] = \bigcup_{\alpha \ge 1} [QZ_{\alpha}^{n}]$. We note that the class $[nQI] \subset class [QZ^{n}]$. **Lemma 5.1:** For each α, β such that $1 \le \alpha \le \beta$, we have $[QZ_{\alpha}^{n}] \subseteq [QZ_{\beta}^{n}]$.

$$\begin{aligned} \mathbf{Proof:} \ \left| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right|^{\beta} &= \left| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right|^{\frac{\alpha}{2}} \left| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right|^{\beta-\alpha} \left| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right|^{\frac{\alpha}{2}} \\ &\leq \left\| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right\|^{\beta-\alpha} \left| \mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T}\mathbf{T}^{n-1} \right|^{\alpha} \\ &\leq \left\| \mathbf{T}^{n+3} \right\| + \left\| \mathbf{T}^{n+1} \right\| \right)^{\beta-\alpha} c_{\alpha}^{2} \left(\mathbf{T} - \lambda \mathbf{I} \right)^{*n} \left(\mathbf{T} - \lambda \mathbf{I} \right)^{n} \\ &= c_{\beta}^{2} \left(\mathbf{T} - \lambda \mathbf{I} \right)^{*n} \left(\mathbf{T} - \lambda \mathbf{I} \right)^{n}, \text{ where } c_{\beta}^{2} \\ &= \left(\left\| \mathbf{T}^{n+3} \right\| + \left\| \mathbf{T}^{n+1} \right\| \right)^{\beta-\alpha} c_{\alpha}^{2}. \text{ Therefore } \left[\mathbf{Q} \mathbf{Z}_{\alpha}^{n} \right] \subseteq \left[\mathbf{Q} \mathbf{Z}_{\beta}^{n} \right]. \end{aligned}$$

Proposition 5.2 [Berberian Technique [1]]

Let H be a complex Hilbert space. Then there exists a Hilbert space $K \supset H$ and an isometric

- * homomorphism preserving the order $\Phi: B(H) \to B(K): T \to T_0$ satisfying:
- (1) $\Phi(T^*) = \Phi(T)^*$ (2) $\Phi(\lambda T + \mu S) = \lambda \Phi(T) + \mu \Phi(S)$ (3) $\Phi(I_H) = I_K$ (4) $\Phi(TS) = \Phi(T)\Phi(S)$ (5) $\|\Phi(T)\| = \|T\|$ (6) $\Phi(T) \le \Phi(S)$ if $T \le S$ (7) $\sigma(\Phi(T)) = \sigma(T), \sigma_a(T) = \sigma_a(\Phi(T)) = \sigma_p(\Phi(T))$

(8) If T is a positive operator, then $\Phi(T^{\alpha}) = |\Phi(T)|^{\alpha} \forall \alpha > 0$.

Lemma 5.3: If $T \in class[nQI]$, then $\Phi(T) \in class[nQI]$.

Lemma 5.4: If $T \in [QZ^n]$ then $\Phi(T) \in [QZ^n]$.

Proof: Since $\mathbf{T} \in [QZ^n]$, $|\mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^2 - \mathbf{T}^*\mathbf{T}\mathbf{T}^{n-1}|^{\alpha} \leq c_{\alpha}^2(\mathbf{T} - \lambda \mathbf{I})^{*n}(\mathbf{T} - \lambda \mathbf{I})^n$ for all $\lambda \in C$, $\alpha \geq 1$ and $c_{\alpha} > 0$. From the properties of Φ it follows that, $\Phi(|\mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^2 - \mathbf{T}^*\mathbf{T}\mathbf{T}^{n-1}|^{\alpha}) \leq \Phi(c_{\alpha}^2(\mathbf{T} - \lambda \mathbf{I})^{*n}(\mathbf{T} - \lambda \mathbf{I})^n)$ for all $\lambda \in C$. By condition 8 of Proposition 5.2, we get, $\Phi(|\mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^2 - \mathbf{T}^*\mathbf{T}\mathbf{T}^{n-1}|^{\alpha}) = |\Phi(|\mathbf{T}^{n-1}\mathbf{T}^{*2}\mathbf{T}^2 - \mathbf{T}^*\mathbf{T}\mathbf{T}^{n-1}|)|^{\alpha}$ for all $\alpha > 0$. Therefore $|\Phi(\mathbf{T})^{n-1}\Phi(\mathbf{T})^{*2}\Phi(\mathbf{T})^2 - \Phi(\mathbf{T})^*\Phi(\mathbf{T})\Phi(\mathbf{T})^{n-1}|^{\alpha} \leq \Phi(c_{\alpha}^2(\mathbf{T} - \lambda \mathbf{I})^{*n}(\mathbf{T} - \lambda \mathbf{I})^n)$ for all $\lambda \in C$. Therefore $\Phi(\mathbf{T}) \in [QZ^n]$

Theorem 5.5: Let $T \in [QZ^1]$,

(1) If $\lambda \in \sigma_p(T)$, such that $|\lambda| = 1$ then $\overline{\lambda} \in \sigma_p(T^*)$, furthermore if $\lambda \neq \mu$ then E_{λ} (the proper subspace associated with λ) is orthogonal to E_{μ} .

(2) If $\lambda \in \sigma_a(\mathbf{T})$ then $\overline{\lambda} \in \sigma_a(\mathbf{T}^*)$.

(3) $T^{*2}T^2 - T^*T$ is not invertible.

Proof: (1) $T \in [QZ^1]$, then $T \in [QZ^1_{\alpha}]$, for some $\alpha \ge 1$, and therefore there exists a positive constant c_{α} such that,

 $\left| \mathbf{T}^{*^{2}}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T} \right|^{\alpha} \leq c_{\alpha}^{2}(\mathbf{T} - \lambda \mathbf{I})^{*}(\mathbf{T} - \lambda \mathbf{I}) \text{ for } \lambda \in C. \quad \text{As } \mathbf{T}x = \lambda x \quad \text{implies} \quad \left| \mathbf{T}^{*^{2}}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T} \right|^{\frac{\alpha}{2}} x = 0 \text{ and} \\ (\mathbf{T}^{*^{2}}\mathbf{T}^{2} - \mathbf{T}^{*}\mathbf{T})x = 0. \quad \lambda^{2}\mathbf{T}^{*2}x - \lambda\mathbf{T}^{*}x = 0 \Longrightarrow \lambda\mathbf{T}^{*2}x - \mathbf{T}^{*}x = 0. \quad \text{By hypothesis} \quad \left| \lambda \right| = 1 \text{ and hence} \\ (\mathbf{T}^{*} - \overline{\lambda})\mathbf{T}^{*}x = 0. \quad \text{To establish} \quad \overline{\lambda} \in \sigma_{p}(\mathbf{T}^{*}) \text{ we need to show that } \mathbf{T}^{*}x \neq 0. \quad \text{Suppose } \mathbf{T}^{*}x = 0, \text{ then} \\ 0 = \left\langle x, \mathbf{T}^{*}x \right\rangle = \left\langle \mathbf{T}x, x \right\rangle = \lambda \left\langle x, x \right\rangle. \text{ Since } x \neq 0, \text{ we obtain } \lambda = 0 \text{ which contradicts, } \left| \lambda \right| = 1 \text{ and hence the desired} \\ \text{result. Moreover if } \lambda \neq \mu, \text{ then } \lambda \left\langle x, y \right\rangle = \left\langle \lambda x, y \right\rangle = \left\langle \mathbf{T}x, y \right\rangle = \left\langle x, \mathbf{T}^{*}y \right\rangle = \left\langle x, \overline{\mu}y \right\rangle = \mu \left\langle x, y \right\rangle$

Therefore $\langle x, y \rangle = 0$.

(2) Let $\lambda \in \sigma_a(T)$ then from condition 7 of Proposition 5.2, we have $\sigma_a(T) = \sigma_a(\Phi(T)) = \sigma_p(\Phi(T))$.

Therefore $\lambda \in \sigma_p(\Phi(T))$.By Lemma 5.4 and condition 1 of proposition 5.2, we obtain,

$$\lambda \in \sigma_p(\Phi(\mathbf{T})^*) = \sigma_p(\Phi(\mathbf{T}^*))$$

(3) $T \in [QZ^1]$, then there exists an integer $p \ge 1$ and $c_p > 0$ such that,

$$\left\| \left| T^{*^{2}}T^{2} - T^{*}T \right|^{2^{p-1}} x \right\| \le c_{p}^{2} \left\| (T - \lambda I)x \right\|^{2} \text{ for all } x \in \mathbf{H}, \lambda \in C.$$

It is known that $\sigma_a(T) \neq \phi$. If $\lambda \in \sigma_a(T)$, then there exists a normed sequence (x_m) in H such that

$$\|(T - \lambda I)x_m\| \to 0$$
 as $m \to \infty$. Then $(T^{*2}T^2 - T^*T)x_m \to 0$ as $m \to \infty$. Therefore $T^{*2}T^2 - T^*T$ is not

invertible.

REFERENCES

- S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan. Math. J., 16 (1969), 273-279.
- 2. T. Furuta, Invitation to linear operators, Taylor and Francis, London New York 2001.
- 3. A. A. S. Jibril, *On n-power normal operators*, The Arabian Journal for Science and Engineering, 33(2A) (2008),247-251.
- 4. S. M. Patel, A note on quasi-isometries, Glasnik Matematicki, 35(55)(2000), 307-312.
- 5. S. M. Patel, A note on quasi-isometries II, Glasnik Matematicki, 38(58)(2003), 111-120.
- Ould Ahmed Mahmoud Sid Ahmed, On the class of n-power quasi-normal operators on Hilbert space, Bull. Math. Anal. Appl. 3(2)(2011), 213-228.
- 7. A. Uchiyama and T. Yoshino, On the class Y operators, Nihonkai Math.J., 8(1997), 179-194.