A NOTE ON THE CLASS OF N-POWER QUASI-ISOMETRY

J. STELLA IRENE MARY \& P. VIJAYALAKSHMI
Department of Mathematics, P.S.G College of Arts and Science, Coimbatore, Tamil Nadu, India

Abstract

In this paper we introduce a new class of operators called the n - power quasi - isometry and study their properties related to quasinormality and partial isometry. We also introduce another related new class of operators and investigate their spectral properties.

KEYWORDS: Hilbert Space, Isometry, Operator, Quasinormal, Quasi-Isometry
AMS 2010 Mathematics Subject Classification: 47B20, 47A62, 47A63.

1. INTRODUCTION

Let T be a bounded linear operator on a complex Hilbert space $\mathrm{H} . \mathrm{T}$ is said to be
(i) Normal if $\mathrm{T}^{*} \mathrm{~T}=\mathrm{TT}^{*}$
(ii) N-Normal if $\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}=\mathrm{T}^{\mathrm{n}} \mathrm{T}^{*}$ [2]
(iii) Quasinormal if $\mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}$
(iv) Quasi - Isometry if $\mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T}$
(v) N-Power Quasinormal if $\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}}=\mathrm{T}^{\mathrm{n}} \mathrm{T}^{*} \mathrm{~T}[6]$.

The class of normal, n-normal, quasinormal and n-power quasinormal operators are denoted by $[\mathrm{N}],[\mathrm{nN}],[\mathrm{QN}]$ and [nQN] respectively. The class of quasi-isometries which is a simple extension of isometries was introduced by[4]. The quasi-isometry operators retain some properties of isometries[5]. We introduce a new class of operators T namely n-power quasi-isometry denoted by [nQI] satisfying $\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}, n \in \mathrm{~N}$. Obviously this is based on the class of quasi-isometries denoted by [QI][4]. It is evident that when $n=1,[1 Q I]=[Q I]$. Interestingly we observe that, for $\mathrm{n}=1,2,3, \ldots$ the corresponding classes $[\mathrm{nQI}]$ are independent which is evident from the following examples.

Example 1.1: For the operator $T=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, a simple calculation shows that $\mathrm{T} \notin[\mathrm{QI}]$ but $\mathrm{T} \in[2 \mathrm{QI}]$.
Example 1.2: The operator $T=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$, is [QI] but not [2QI].
Example 1.3: When $H=\ell^{2}$, the unilateral shift given by the matrix operator $T=\left(\begin{array}{cccccc}0 & 0 & 0 & . & . & . \\ 1 & 0 & 0 & . & . & . \\ 0 & 1 & 0 & . & . & . \\ \ldots & \cdots & \ldots & . & . & .\end{array}\right)$, satisfies $\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}$ but not $\mathrm{T}^{2}\left(\mathrm{~T}^{* 2} \mathrm{~T}^{2}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{2}$. That is, $\mathrm{T} \in[2 \mathrm{QI}]$ and $\mathrm{T} \notin[3 \mathrm{QI}]$.

Let $\mathrm{B}(\mathrm{H})$ denote the Banach algebra of all bounded linear operators on a complex Hilbert space H and let $\sigma(\mathrm{T}), \sigma_{\mathrm{a}}(\mathrm{T})$ and $\sigma_{p}(T)$ denote the spectrum, the approximate point spectrum and the point spectrum of T respectively.

2. PROPERTIES OF CLASS [nQI]

Definition 2.1: An operator T is said to be unitarily equivalent to an operator S if $\mathrm{S}=\mathrm{UTU}^{*}$ for an unitary operator U.
Theorem 2.2: The following assertions hold:
(1) If $\mathrm{T} \in[\mathrm{QI}] \cap[2 \mathrm{QI}]$ then $\mathrm{T} \in[\mathrm{nQI}], \mathrm{n}>2$.
(2) If $\mathrm{T} \in[2 \mathrm{QI}] \cap[3 \mathrm{QI}]$ then $\mathrm{T} \in[\mathrm{nQI}], \mathrm{n} \geq 4$.
(3) If $\mathrm{T} \in[\mathrm{nQI}]$ then every operator unitarily equivalent to T is also [nQI].
(4) $\mathrm{T} \in[\mathrm{QI}] \cap[\mathrm{nQI}]$ then $\mathrm{T} \in[(\mathrm{n}-1) \mathrm{QN}], \mathrm{n} \geq 2$.

Proof: (1) Since $T \in[Q I] \cap[2 Q I]$, we have,
$\mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T}$
$\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}$.
Combining (2.1) and (2.2), we obtain,
$\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}$
By (2.1) and (2.3), ($\left.\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}-1}=\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-1}=\left(\mathrm{T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}-2}=\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-2}$.
Again applying (2.3) in $\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}-1}=\mathrm{T}\left(\mathrm{T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}-3}$, we obtain $\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}-1}=\mathrm{T}\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-3}$.

Repeating the procedure we arrive at $\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}$.
(2) Since $T \in[2 \mathrm{QI}] \cap[3 \mathrm{QI}], \mathrm{T}^{2} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{2}$ and $\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}$.

Combining these two equations we obtain, $\mathrm{T}\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right)=\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}$
Using (2.4) and (2.5) we have

$$
\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}=\left(\mathrm{T}^{*} \mathrm{TT}\right) \mathrm{T}^{\mathrm{n}-2}=\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-2}=\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{TT}^{\mathrm{n}-3}=\mathrm{T}\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-3}=\mathrm{T}^{2} \mathrm{~T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}^{\mathrm{n}-3}
$$

Using (2.5) repeatedly for a finite number of times we obtain $\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}$.
(3) Let S be unitarily equivalent to $\mathrm{T} \in[\mathrm{nQI}]$. Then $\mathrm{S}=\mathrm{UTU}^{*}$, where U is unitary. Since $\mathrm{T} \in[\mathrm{nQI}]$,
$\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{*} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}$ and
$S^{\mathrm{n}-1} \mathrm{~S}^{* 2} \mathrm{~S}^{2}=\left(\mathrm{U} \mathrm{T}^{\mathrm{n}-1} \mathrm{U}^{*}\right)\left(\mathrm{UT}^{* 2} \mathrm{U}^{*}\right)\left(\mathrm{UT}^{2} \mathrm{U}^{*}\right)=\mathrm{U}\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}\right) \mathrm{U}^{*}=\mathrm{U}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}\right) \mathrm{U}^{*}=\mathrm{S}^{*} \mathrm{~S}^{\mathrm{n}}$.
(4) Since $T \in[Q I] \cap[n Q I]$, we have,

$$
\begin{align*}
& \mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T} \tag{2.6}\\
& \mathrm{~T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1} . \tag{2.7}\\
& \mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2} \text { by }(2.7) \\
& \mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{*} \mathrm{~T} \text { by }(2.6) .
\end{align*}
$$

Hence $T \in[(n-1) Q N]$.

It is natural to ask whether the product and sum of two $[\mathrm{nQI}]$ operators are $[\mathrm{nQI}]$. In general they need not be. The following Theorem gives an affirmative answer under some conditions.

Theorem 2.4

(1) If T and S are of class [nQI], such that T doubly commutes with S then $\mathrm{TS} \in[\mathrm{nQI}]$.
(2) If T and S are of class [nQI$]$, such that $\mathrm{ST}=\mathrm{TS}=\mathrm{T}^{*} \mathrm{~S}=\mathrm{ST}^{*}=0$ then $\mathrm{T}+\mathrm{S} \in[\mathrm{nQI}]$.

Proof: (1) Since T doubly commutes with $S, T S=S T$ and $\mathrm{TS}^{*}=\mathrm{S}^{*} \mathrm{~T}$.

$$
(\mathrm{TS})^{\mathrm{n}-1}(\mathrm{TS})^{* 2}(\mathrm{TS})^{2}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~S}^{\mathrm{n}-1} \mathrm{~S}^{* 2} \mathrm{~T}^{* 2} \mathrm{~T}^{2} \mathrm{~S}^{2}=\mathrm{S}^{\mathrm{n}-1} \mathrm{~S}^{* 2} \mathrm{~S}^{2} \mathrm{~T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{S}^{*} \mathrm{SS}^{\mathrm{n}-1} \mathrm{~T}^{*} \mathrm{TT}^{\mathrm{n}-1}=(\mathrm{TS})^{*}(\mathrm{TS})(\mathrm{TS})^{\mathrm{n}-1}
$$ since $T, S \in[n Q I]$.Thus $T S \in[n Q I]$.

(2) Since $T S=S T=\mathrm{T}^{*} \mathrm{~S}=\mathrm{ST}^{*}=0$, we have,

$$
\begin{aligned}
& (\mathrm{T}+\mathrm{S})^{\mathrm{n}-1}(\mathrm{~T}+\mathrm{S})^{* 2}(\mathrm{~T}+\mathrm{S})^{2}=\left(\mathrm{T}^{\mathrm{n}-1}+\mathrm{S}^{\mathrm{n}-1}\right)\left(\mathrm{T}^{* 2}+\mathrm{S}^{* 2}\right)\left(\mathrm{T}^{2}+\mathrm{S}^{2}\right)=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}+\mathrm{S}^{\mathrm{n}-1} \mathrm{~S}^{* 2} \mathrm{~S}^{2} \\
& =\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}+\mathrm{S}^{*} \mathrm{SS}^{\mathrm{n}-1} \text { since } \mathrm{T}, \mathrm{~S} \in[\mathrm{nQI}] . \quad(\mathrm{T}+\mathrm{S})^{\mathrm{n}-1}(\mathrm{~T}+\mathrm{S})^{* 2}(\mathrm{~T}+\mathrm{S})^{2}=(\mathrm{T}+\mathrm{S})^{*}(\mathrm{~T}+\mathrm{S})(\mathrm{T}+\mathrm{S})^{\mathrm{n}-1}
\end{aligned}
$$

Thus $\mathrm{T}+\mathrm{S} \in[\mathrm{nQI}]$.

3. CONDITIONS IMPLYING QUASINORMALITY

The class of normal operators and quasinormal operators are independent of class [nQI]. In this section we prove that under some algebraic conditions $\mathrm{T}, \mathrm{T}^{2}$ or $\mathrm{T}^{\mathrm{n}-1}$ are quasinormal.

Theorem 3.1

(1) Let $\mathrm{T} \in[\mathrm{QI}] \cap[3 \mathrm{QI}]$ then T^{2} is quasinormal.
(2) If $\mathrm{T} \in[2 \mathrm{QI}] \cap[3 \mathrm{QI}]$ and $\operatorname{ker}\left(\mathrm{T}^{*}\right) \subset \operatorname{ker}(\mathrm{T})$ then is T quasinormal and in particular if $\operatorname{ker}\left(\mathrm{T}^{*}\right)=0$ then T is normal where kerT is the nullspace of T .

Proof: (1) Since $T \in[Q 1] \cap[3 Q I], T^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T}$ and $\mathrm{T}^{2} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{2}$ Hence $\mathrm{T}^{2} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{2}=\mathrm{T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}^{2}$ Hence T^{2} is quasinormal.
(2) By hypothesis, $\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}$
and $\mathrm{T}^{2} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{2}$
$\mathrm{T}\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{2} \Rightarrow \mathrm{~T}\left(\mathrm{~T}^{*} \mathrm{TT}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{2}$ by (3.1). $\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{2}=0$ or $\mathrm{T}^{* 2}\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right)=0 . \operatorname{since} \operatorname{ker}\left(\mathrm{T}^{*}\right) \subset \operatorname{ker}(\mathrm{T}), \mathrm{TT}^{*}\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right)=0$ and $\operatorname{ker}\left|\mathrm{T}^{*}\right|^{2}=\operatorname{ker} \mathrm{T}^{*} \operatorname{implies}$
$\mathrm{T}^{*}\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right)=0$
($\left.\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}=0$. Hence T is quasinormal. If $\operatorname{ker}\left(\mathrm{T}^{*}\right)=0$ then from (3.3) we obtain T is normal.
Theorem 3.2: If T and $T-I$ are in $[2 Q I] \cap[3 Q I]$, then T is quasinormal.
Proof: Since $T \in[2 Q I]$ and $T-I \in[2 Q I]$,
$\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}$
$(\mathrm{T}-\mathrm{I})(\mathrm{T}-\mathrm{I})^{* 2}(\mathrm{~T}-\mathrm{I})^{2}=(\mathrm{T}-\mathrm{I})^{*}(\mathrm{~T}-\mathrm{I})(\mathrm{T}-\mathrm{I})$
To prove that T is quasinormal, by part 2 of Theorem 3.1, it is enough to prove the kernel condition $\operatorname{ker}\left(\mathrm{T}^{*}\right) \subset \operatorname{ker}(\mathrm{T}) \quad$ Since $(\mathrm{T}-\mathrm{I}) \in[3 \mathrm{QI}],(\mathrm{T}-\mathrm{I})^{2}(\mathrm{~T}-\mathrm{I})^{* 2}(\mathrm{~T}-\mathrm{I})^{2}=(\mathrm{T}-\mathrm{I})^{*}(\mathrm{~T}-\mathrm{I})(\mathrm{T}-\mathrm{I})^{2}$
$(\mathrm{T}-\mathrm{I})(\mathrm{T}-\mathrm{I})^{*}(\mathrm{~T}-\mathrm{I})^{2}=(\mathrm{T}-\mathrm{I})^{*}(\mathrm{~T}-\mathrm{I})(\mathrm{T}-\mathrm{I})^{2}$ by (3.5).
On simplifying we obtain, $\mathrm{TT}^{*} \mathrm{~T}^{2}+\mathrm{TT}^{*}-2 \mathrm{TT}^{*} \mathrm{~T}+2 \mathrm{~T}^{*} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}^{3}-\mathrm{T}^{*} \mathrm{~T}=0$.
$\mathrm{TT}^{*} \mathrm{~T}^{2}+\mathrm{TT}^{*}-2 \mathrm{TT}^{*} \mathrm{~T}+2\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right)-\left(\mathrm{TT}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}-\mathrm{T}^{*} \mathrm{~T}=0$ by (3.4)
or $\mathrm{T}^{* 2} \mathrm{TT}^{*}+\mathrm{TT}^{*}-2 \mathrm{~T}^{*} \mathrm{TT}^{*}+2 \mathrm{~T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}^{*}-\mathrm{T}^{*} \mathrm{~T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}^{*}-\mathrm{T}^{*} \mathrm{~T}=0$.
Let $x \in \operatorname{ker}\left(\mathrm{~T}^{*}\right)$, then $\mathrm{T}^{*} x=0$. From the above equation, $-\mathrm{T}^{*} \mathrm{~T} x=0 \Rightarrow \mathrm{~T} x=0$. Therefore $\operatorname{ker}\left(\mathrm{T}^{*}\right) \subset \operatorname{ker}(\mathrm{T})$ and hence T is quasinormal.

Theorem 3.3: If $\mathrm{T} \in[\mathrm{QI}] \cap[\mathrm{nQI}]$ then $\mathrm{T}^{\mathrm{n}-1}$ is quasinormal.
Proof: By hypotheses given in the theorem, we have

$$
\begin{align*}
& \mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T} \tag{3.6}\\
& \mathrm{~T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1} \tag{3.7}
\end{align*}
$$

We need to prove $T^{n-1}\left(T^{* n-1} T^{n-1}\right)=\left(T^{* n-1} T^{n-1}\right) T^{n-1}$

$$
\mathrm{T}^{\mathrm{n}-1}\left(\mathrm{~T}^{* \mathrm{n}-1} \mathrm{~T}^{\mathrm{n}-1}\right)=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* \mathrm{n}-3}\left(\mathrm{~T}^{* 2} \mathrm{~T}^{2}\right) \mathrm{T}^{\mathrm{n}-3}=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* \mathrm{n}-2} \mathrm{~T}^{\mathrm{n}-2} \text { by (3.6). }
$$

Repeated application of (3.6) gives, $\mathrm{T}^{\mathrm{n}-1}\left(\mathrm{~T}^{* \mathrm{n}-1} \mathrm{~T}^{\mathrm{n}-1}\right)=\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}$ by (3.7)

$$
=\mathrm{T}^{* 2} \mathrm{~T}^{2} \mathrm{~T}^{\mathrm{n}-1} \text { by (3.6) }
$$

$$
\begin{aligned}
= & \mathrm{T}^{* 3} \mathrm{~T}^{3} \mathrm{~T}^{\mathrm{n}-1} \text { by }(3.6) \\
& =\mathrm{T}^{* 4} \mathrm{~T}^{4} \mathrm{~T}^{\mathrm{n}-1} \text { by }(3.6)
\end{aligned}
$$

Repeating the process and using (3.6) we obtain the desired result.

4. CONDITIONS IMPLYING PARTIAL ISOMETRY

In this section we show that by imposing certain conditions on [nQI] operator it becomes partial isometry.

Lemma 4.1: Let $T \in[n Q I]$ then $T \in[(n+1) Q I]$ if and only if $\left[\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}, \mathrm{T}\right]=0$ where $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}$.

Proof: $T \in[(n+1) Q I] \Leftrightarrow T^{n} T^{* 2} T^{2}=T^{*} T T^{n} \Leftrightarrow T\left(T^{n-1} T^{* 2} T^{2}\right)=\left(T^{*} T^{n}\right) T \Leftrightarrow T\left(T^{*} T T^{n-1}\right)=\left(T^{*} T^{n}\right) T$
$\Leftrightarrow \mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}\right)=\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}\right) \mathrm{T} \Leftrightarrow\left[\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}, \mathrm{T}\right]=0$.

Theorem 4.2: Let $T \in[(n+1) Q I] \cap[n Q I]$ such that T^{n} has dense range in H, then T is normal partial isometry.

Proof: By Lemma 4.1, $\mathrm{TT}^{*} \mathrm{~T}^{\mathrm{n}}=\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}} \mathrm{T}$ or $\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{\mathrm{n}}=0$. Since T^{n} has dense range in H , T is normal. Hence $\left(T^{*} T\right)^{2} T^{n}=T^{* 2} T^{2} T^{n}=T^{n} T^{* 2} T^{2}=T^{*} T T^{n}$. Thus $\left[\left(T^{*} T\right)^{2}-T^{*} T\right] T^{n}=0$ on range of T^{n} and we have $\mathrm{T}^{*} \mathrm{~T}$ is a projection and hence T is a partial isometry by [2.2.1 Theorem 3[2]].

Corollary 4.3: If $T \in[(n+1) Q I] \cap[n Q I]$ such that T^{n} has dense range in H, then T is unitary.

Proof: By Theorem 4.2, Tis normal and partial isometry and hence TT* ${ }^{*}=\mathrm{T}$. By the definition of [nQI] $\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}^{\mathrm{n}-1}$ or $\mathrm{T}\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}\right)=\mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}\right)$ or $\mathrm{T}^{\mathrm{n}} \mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{~T}^{\mathrm{n}}$.

Since $T \in\left[(n+1) Q \Gamma, T^{*} \mathrm{~T} \mathrm{~T}^{\mathrm{n}}=\mathrm{T}^{\mathrm{n}} \mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{TT}^{*} \mathrm{~T}^{\mathrm{n}}\right.$ by (4.1). That is $\mathrm{T}^{*} \mathrm{~T} \mathrm{~T}^{\mathrm{n}}=\mathrm{TT}^{*} \mathrm{~T}^{\mathrm{n}} . \quad$ Using $\mathrm{TT}^{*} \mathrm{~T}=\mathrm{T}$,
we obtain, $T^{*} T T^{n}=T^{n-1}$ or $\left(T^{*} T-I\right) T^{n}=0$. Since range of T^{n} is dense in $H, T^{*} T=I$ and hence T is unitary.

Theorem 4.4: Let $T=U P$ be the polar decomposition of T and $T \in[2 Q I]$ such that $\operatorname{ker}(U) \subset \operatorname{ker}\left(U^{*}\right)$ then T is partial isometry.

Proof: $\mathrm{T} \in[2 \mathrm{QI}]$ implies $\mathrm{TT}^{* 2} \mathrm{~T}^{2}=\mathrm{T}^{*} \mathrm{TT}$ or $\mathrm{UP}^{2} \mathrm{U}^{*} \mathrm{P}^{2} \mathrm{UP}=\mathrm{P}^{2} \mathrm{UP}$. Taking adjoint
$\mathrm{PU}^{*} \mathrm{P}^{2} \mathrm{UP}^{2} \mathrm{U}^{*}=\mathrm{PU}^{*} \mathrm{P}^{2}$. The kernel condition $\operatorname{ker}(\mathrm{U})=\operatorname{ker}(\mathrm{P})$ yields, $\mathrm{UU}^{*} \mathrm{P}^{2} \mathrm{UP}^{2} \mathrm{U}^{*}=\mathrm{UU}^{*} \mathrm{P}^{2}$ or
$\mathrm{U}^{*} \mathrm{UU}^{*} \mathrm{P}^{2} \mathrm{UP}^{2} \mathrm{U}^{*}=\mathrm{U}^{*} \mathrm{UU}^{*} \mathrm{P}^{2}$ or $\mathrm{U}^{*} \mathrm{P}^{2} \mathrm{UP}^{2} \mathrm{U}^{*}=\mathrm{U}^{*} \mathrm{P}^{2}$. Since $\mathrm{U}^{*} \mathrm{UP}^{2}=\mathrm{P}^{2}$ we have,
$\mathrm{U}^{*} \mathrm{P}^{2} \mathrm{UP}^{2}=\mathrm{U}^{*} \mathrm{P}^{2} \mathrm{U}$, or $\mathrm{U}^{*} \mathrm{P}^{2} \mathrm{U}\left(\mathrm{P}^{2}-\mathrm{I}\right)=0$ or $\left[\mathrm{PU}\left(\mathrm{P}^{2}-\mathrm{I}\right)\right]^{*}\left[\mathrm{PU}\left(\mathrm{P}^{2}-\mathrm{I}\right)\right]=0$.

Using the fact that, $S^{*} S=0 \Rightarrow S=0$ for any operator S on H , we obtain $\mathrm{PU}\left(\mathrm{P}^{2}-\mathrm{I}\right)=0$. Again
$\operatorname{ker}(\mathrm{U})=\operatorname{ker}(\mathrm{P})$ yields $\mathrm{U}^{2}\left(\mathrm{P}^{2}-\mathrm{I}\right)=0$. By hypothesis, $\operatorname{ker}(\mathrm{U}) \subset \operatorname{ker}\left(\mathrm{U}^{*}\right)$ and hence,
$\mathrm{U}^{*} \mathrm{U}\left(\mathrm{P}^{2}-\mathrm{I}\right)=0$ or $\mathrm{P}^{2}=\mathrm{U}^{*} \mathrm{U}$. That is P^{2} is a projection and P is a partial isometry by [2.2.1 Theorem 3[2]]. Hence $\mathrm{T}=\mathrm{UP}$ is a partial isometry.

Remark 4.5: The above Theorem raises the following question: Is a 2 - power quasi - isometry T a partial isometry if $\operatorname{ker}\left(\mathrm{U}^{*}\right) \subset \operatorname{ker}(\mathrm{U})$.

Theorem 4.6: Let T be of class [$n Q I$] such that T is a partial isometry then T^{2} is an isometry.
Proof: T is a partial isometry implies $\mathrm{TT}^{*} \mathrm{~T}=\mathrm{T}$
Since $T \in[n Q I] T^{n-1} T^{* 2} T^{2}=T^{*} T^{n-1}$.

$$
\begin{align*}
& \mathrm{T}\left(\mathrm{~T}^{\mathrm{n}-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}\right)=\mathrm{T}\left(\mathrm{~T}^{*} \mathrm{TT}^{\mathrm{n}-1}\right) \Rightarrow \mathrm{T}^{\mathrm{n}} \mathrm{~T}^{* 2} \mathrm{~T}^{2}=\mathrm{TT}^{\mathrm{n}-1} \text { by (4.2). } \\
& \mathrm{T}^{\mathrm{n}}\left(\mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{I}\right)=0 \tag{4.3}
\end{align*}
$$

That is, $\mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{I}$ on $\operatorname{ker}\left(\mathrm{T}^{n}\right)$. By (4.3) $\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{I}\right) \mathrm{T}^{* n}=0$ or $\mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{I}$ on $\operatorname{ker}\left(\mathrm{T}^{n}\right)^{\perp}$. Thus $\mathrm{T}^{* 2} \mathrm{~T}^{2}=\mathrm{I}$ on $\mathrm{H}=\operatorname{ker}\left(\mathrm{T}^{n}\right) \oplus \operatorname{ker}\left(\mathrm{T}^{n}\right)^{\perp}$ implies T^{2} is isometry.

Definition 4.7: The spectral radius of $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ is defined as $r(\mathrm{~T})=\sup \{|\lambda|: \lambda \in \sigma(\mathrm{T})\}$
It is well known that for a quasinormal operator, $r(\mathrm{~T})=\|\mathrm{T}\|[2]$.
Theorem 4.8: If $\mathrm{T} \in[\mathrm{QI}] \cap[2 \mathrm{QI}]$,then $r(\mathrm{~T})=1$ where $r(\mathrm{~T})$ is the spectral radius of T .
Proof: Since $\mathrm{T} \in[\mathrm{QI}] \cap[2 \mathrm{QI}]$, by 4 of Theorem 2.1, T is quasinormal and hence $r(\mathrm{~T})=\|\mathrm{T}\|=1$.

5. CLASS $\left[Q Z_{\alpha}^{n}\right]$ OPERATORS

A.Uchiyama and T.Yoshino [7] studied a class of opeators T satisfying

$$
\left|\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right|^{\alpha} \leq c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})(\mathrm{T}-\lambda \mathrm{I})^{*} \text { where } \alpha>0 \text { and } \lambda \in C .
$$

Analogously, we define a new class $\left[Q \mathrm{Z}_{\alpha}^{n}\right]$ based on the n - power quasi isometry class [nQI$]$. We define a class $\left[Q \mathrm{Z}_{\alpha}^{n}\right]$ of operators T satisfying the following hypothesis. $\mathrm{T} \in\left[Q \mathrm{Z}_{\alpha}^{n}\right]$ if for some $\alpha \geq 1$ and $c_{\alpha}>0$, $\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\alpha} \leq c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{* n}(\mathrm{~T}-\lambda \mathrm{I})^{n}$ for all $\lambda \in C$. Equivalently, for some $\alpha \geq 1$ and $c_{\alpha}>0$ $\left\|\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\frac{\alpha}{2}} x\right\| \leq c_{\alpha}\left\|(\mathrm{T}-\lambda \mathrm{I})^{n} x\right\|$ for all $x \in \mathrm{H}, \lambda \in C$. Also let $\left[Q \mathrm{Z}^{n}\right]=\bigcup_{\alpha \geq 1}\left[Q \mathrm{Z}_{\alpha}^{n}\right]$. We note that the class $[\mathrm{nQ}] \subset$ class $\left[\mathrm{QZ}^{\mathrm{n}}\right]$.

Lemma 5.1: For each α, β such that $1 \leq \alpha \leq \beta$, we have $\left[Q Z_{\alpha}^{n}\right] \subseteq\left[Q Z_{\beta}^{n}\right]$.
Proof: $\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\beta}=\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\frac{\alpha}{2}}\left|\mathrm{~T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\beta-\alpha}\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\frac{\alpha}{2}}$ $\leq\left\|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right\|^{\beta-\alpha}\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\alpha} \leq\left(\left\|\mathrm{T}^{n+3}\right\|+\left\|\mathrm{T}^{n+1}\right\|\right)^{\beta-\alpha} c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{* n}(\mathrm{~T}-\lambda \mathrm{I})^{n}=$ $c_{\beta}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{{ }^{*} n}(\mathrm{~T}-\lambda \mathrm{I})^{n}$, where $c_{\beta}^{2}=\left(\left\|\mathrm{T}^{n+3}\right\|+\left\|\mathrm{T}^{n+1}\right\|\right)^{\beta-\alpha} c_{\alpha}^{2}$. Therefore $\left[Q \mathrm{Z}_{\alpha}^{n}\right] \subseteq\left[Q \mathrm{Z}_{\beta}^{n}\right]$.

Proposition 5.2 [Berberian Technique [1]]

Let H be a complex Hilbert space. Then there exists a Hilbert space $\mathrm{K} \supset \mathrm{H}$ and an isometric

* - homomorphism preserving the order $\Phi: \mathrm{B}(\mathrm{H}) \rightarrow \mathrm{B}(\mathrm{K}): \mathrm{T} \rightarrow \mathrm{T}_{0}$ satisfying:
(1) $\Phi\left(\mathrm{T}^{*}\right)=\Phi(\mathrm{T})^{*} \quad$ (2) $\Phi(\lambda \mathrm{T}+\mu S)=\lambda \Phi(\mathrm{T})+\mu \Phi(S)$
(3) $\Phi\left(\mathrm{I}_{\mathrm{H}}\right)=\mathrm{I}_{\mathrm{K}}$
(4) $\Phi(\mathrm{TS})=\Phi(\mathrm{T}) \Phi(S)$
(5) $\|\Phi(\mathrm{T})\|=\|\mathrm{T}\|$
(6) $\Phi(\mathrm{T}) \leq \Phi(S)$ if $\mathrm{T} \leq S$
(7) $\sigma(\Phi(\mathrm{T}))=\sigma(\mathrm{T}), \sigma_{a}(\mathrm{~T})=\sigma_{a}(\Phi(\mathrm{~T}))=\sigma_{p}(\Phi(\mathrm{~T}))$
(8) If T is a positive operator, then $\Phi\left(\mathrm{T}^{\alpha}\right)=|\Phi(\mathrm{T})|^{\alpha} \forall \alpha>0$.

Lemma 5.3: If $\mathrm{T} \in \operatorname{class}[n Q \mathrm{I}]$, then $\Phi(\mathrm{T}) \in \operatorname{class}[n Q \mathrm{I}]$.
Lemma 5.4: If $\mathrm{T} \in\left[Q \mathrm{Z}^{n}\right]$ then $\Phi(\mathrm{T}) \in\left[Q Z^{n}\right]$.
Proof: Since $\mathrm{T} \in\left[Q \mathrm{Z}^{n}\right],\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\alpha} \leq c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{{ }^{n}}(\mathrm{~T}-\lambda \mathrm{I})^{n}$ for all $\lambda \in C, \alpha \geq 1$ and $c_{\alpha}>0$. From the properties of Φ it follows that, $\Phi\left(\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\alpha}\right) \leq \Phi\left(c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{* n}(\mathrm{~T}-\lambda \mathrm{I})^{n}\right)$ for all $\lambda \in C$. By condition 8 of Proposition 5.2, we get, $\left.\Phi\left(\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|^{\alpha}\right)=\mid \Phi\left(\left|\mathrm{T}^{n-1} \mathrm{~T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{TT}^{n-1}\right|\right)\right)^{\alpha}$ for all $\quad \alpha>0$. Therefore $\left|\Phi(\mathrm{T})^{n-1} \Phi(\mathrm{~T})^{* 2} \Phi(\mathrm{~T})^{2}-\Phi(\mathrm{T})^{*} \Phi(\mathrm{~T}) \Phi(\mathrm{T})^{n-1}\right|^{\alpha} \leq \Phi\left(c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{* n}(\mathrm{~T}-\lambda \mathrm{I})^{n}\right)$ for all $\lambda \in C$. Therefore $\Phi(T) \in\left[Q Z^{n}\right]$

Theorem 5.5: Let $\mathrm{T} \in\left[Q Z^{1}\right]$,
(1) If $\lambda \in \sigma_{p}(\mathrm{~T})$, such that $|\lambda|=1$ then $\bar{\lambda} \in \sigma_{p}\left(\mathrm{~T}^{*}\right)$, furthermore if $\lambda \neq \mu$ then E_{λ} (the proper subspace associated with $\lambda)$ is orthogonal to E_{μ}.
(2) If $\lambda \in \sigma_{a}(\mathrm{~T})$ then $\bar{\lambda} \in \sigma_{a}\left(\mathrm{~T}^{*}\right)$.
(3) $T^{* 2} T^{2}-T^{*} T$ is not invertible.

Proof: (1) $\mathrm{T} \in\left[Q \mathrm{Z}^{1}\right]$, then $\mathrm{T} \in\left[Q \mathrm{Z}_{\alpha}^{1}\right]$, for some $\alpha \geq 1$, and therefore there exists a positive constant c_{α} such that, $\left|\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}\right|^{\alpha} \leq c_{\alpha}^{2}(\mathrm{~T}-\lambda \mathrm{I})^{*}(\mathrm{~T}-\lambda \mathrm{I})$ for $\lambda \in C . \quad$ As $\mathrm{T} x=\lambda x \quad$ implies $\quad\left|\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}\right|^{\frac{\alpha}{2}} x=0$ and $\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}\right) x=0 . \quad \lambda^{2} \mathrm{~T}^{* 2} x-\lambda \mathrm{T}^{*} x=0 \Rightarrow \lambda \mathrm{~T}^{* 2} x-\mathrm{T}^{*} x=0 . \quad$ By \quad hypothesis $\quad|\lambda|=1$ and \quad hence $\left(\mathrm{T}^{*}-\bar{\lambda}\right) \mathrm{T}^{*} x=0$. To establish $\bar{\lambda} \in \sigma_{p}\left(\mathrm{~T}^{*}\right)$ we need to show that $\mathrm{T}^{*} x \neq 0$. Suppose $\mathrm{T}^{*} x=0$, then $0=\left\langle x, \mathrm{~T}^{*} x\right\rangle=\langle\mathrm{T} x, x\rangle=\lambda\langle x, x\rangle$. Since $x \neq 0$, we obtain $\lambda=0$ which contradicts, $|\lambda|=1$ and hence the desired result. Moreover if $\lambda \neq \mu$, then $\lambda\langle x, y\rangle=\langle\lambda x, y\rangle=\langle\mathrm{T} x, y\rangle=\left\langle x, \mathrm{~T}^{*} y\right\rangle=\langle x, \bar{\mu} y\rangle=\mu\langle x, y\rangle$

Therefore $\langle x, y\rangle=0$.
(2) Let $\lambda \in \sigma_{a}(\mathrm{~T})$ then from condition 7 of Proposition 5.2, we have $\sigma_{a}(\mathrm{~T})=\sigma_{a}(\Phi(\mathrm{~T}))=\sigma_{p}(\Phi(\mathrm{~T}))$.

Therefore $\lambda \in \sigma_{p}(\Phi(\mathrm{~T}))$.By Lemma 5.4 and condition 1 of proposition 5.2, we obtain,

$$
\bar{\lambda} \in \sigma_{p}\left(\Phi(\mathrm{~T})^{*}\right)=\sigma_{p}\left(\Phi\left(\mathrm{~T}^{*}\right)\right)
$$

(3) $\mathrm{T} \in\left[Q \mathrm{Z}^{1}\right]$, then there exists an integer $p \geq 1$ and $c_{p}>0$ such that,

$$
\left\|\left|\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}\right|^{2 p-1} x\right\| \leq c_{p}^{2}\|(\mathrm{~T}-\lambda \mathrm{I}) x\|^{2} \text { for all } x \in \mathrm{H}, \lambda \in C .
$$

It is known that $\sigma_{a}(\mathrm{~T}) \neq \phi$. If $\lambda \in \sigma_{a}(\mathrm{~T})$, then there exists a normed sequence $\left(x_{m}\right)$ in H such that
$\left\|(\mathrm{T}-\lambda \mathrm{I}) x_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Then $\left(\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}\right) x_{m} \rightarrow 0$ as $m \rightarrow \infty$. Therefore $\mathrm{T}^{* 2} \mathrm{~T}^{2}-\mathrm{T}^{*} \mathrm{~T}$ is not invertible.

REFERENCES

1. S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan. Math. J., 16 (1969), 273-279.
2. T. Furuta, Invitation to linear operators, Taylor and Francis, London New York 2001.
3. A. A. S. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2A) (2008),247-251.
4. S. M. Patel, A note on quasi-isometries, Glasnik Matematicki, 35(55)(2000), 307-312.
5. S. M. Patel, A note on quasi-isometries II, Glasnik Matematicki, 38(58)(2003), 111-120.
6. Ould Ahmed Mahmoud Sid Ahmed, On the class of n-power quasi-normal operators on Hilbert space, Bull. Math. Anal. Appl. 3(2)(2011), 213-228.
7. A. Uchiyama and T. Yoshino, On the class Y operators, Nihonkai Math.J., 8(1997), 179-194.
